IPERATTIVITÀ GHIANDOLARE E SCIALORREA: DIAGNOSTICA NEUROFISIOLOGICA E TOSSINA BOTULINICA

Grazia Devigili

Assenza di conflitto di interessi

Dichiaro l'assoluta autonomia dei contenuti scientifici di questa presentazione ed indipendenza da interessi economici commerciali con possibili aziende sponsorizzatrici.

Neurogenic hyperactivity

sialorrhea

Hypersalivation (or sialorrhea) refers to the presence of excessive saliva in the mouth, which may cause drooling

Major salivary glands

Parotid

• Submandibular

• Sublingual

Parotids + submandibular 95% of the total salivary secretion

500-600ml / day 99% water, 1% proteins

TABLE 1 Salivary gland structural features, parasympathetic innervation and contribution to whole saliva volume under unstimulated (in the absence of exogenous stimuli) and under chewing-stimulated conditions^{1,10,12-14,40}

	Acinar cell type	Secretory product	Contribution (%) to whole saliva volume	Parasympathetic nerve supply	Ducts to the oral cavity
Major salivary glands	_				
Parotid glands	Serous	Watery, amylase-rich	Resting: 25% Stimulated: 50%	Glossopharyngeal nerve	Stensen's duct
Submandibular glands	Mixed, mainly serous	Viscous, mucin-rich	Resting: 60% Stimulated: 35%	Facial nerve	Wharton's duct
Sublingual glands	Mixed, mainly mucous	Viscous, mucin-rich	Resting: 7%-8% Stimulated: 7%-8%	Facial nerve	Ducts of Rivinus Bartholin's duct
Minor salivary glands					
Palatinal glands	Mucous	Mucin-rich	Resting: 8%	Facial nerve	Individual small
Buccal glands	Mixed, mainly mucous	Mucin-rich	Stimulated: 8%	Facial nerve	ducts
Labial glands	Mixed, mainly mucous	Mucin-rich		Facial nerve	
Lingual glands	Serous	Watery, lipase-rich		Glossopharyngeal	
Retromolar glands	Mucous	Viscous, mucin-rich		Facial nerve/ Glossopharyngeal	

The sympathetic nerve supply is obtained from the superior cervical ganglion. Mixed means that the glands contain both serous and mucous acini, also mucous acini capped with serous demilunes may be seen in these glands.

The salivary reflex

parasympathetic

sympathetic

The salivary reflex

parasympathetic

sympathetic

The salivary reflex

Parasympathetic stimulation

- 1) Is mediated mainly by acetylcholine in combination with NANC peptides (e.g. VIP)
- 2) Evokes most of the salivary fluid secreted. Mainly acts through M3 and to a lesser extent M1 muscarinic cholinergic receptors
- 3) Causes variable degrees of exocytosis from salivary cells but is responsible for most mucin secretion by mucous glands
- 4) Induces contraction of myoepithelial cells
- 5) Increases glandular blood flow as part of the salivary reflex

Sympathetic stimulation

1) Is mediated mainly by noradrenaline and acts essentially on cells receiving parasympathetic impulses, which tends to produce synergistic effects, but exerts little effect on mucous gland secretion

2) Often does not cause much mobilization of fluid but DOES NOT inhibit salivary secretion

3) Tends to modulate the composition of saliva by increasing exocytosis from salivary cells

4) Induces contraction of myoepithelial cells

5) Exerts control on glandular blood flow but NOT as part of the salivary reflex

Myoepithelial cells surrounding acinar groups demonstrated by actin staining

Cholinesterase staining of parasympathetic nerves surrounding the acinar units

Acini (Ac) and ducts (Dc)

Proctor, 2007

Parasympathetic and sympathetic nerves: synergic function

- Resting flow rate (0.3-0.4ml/min, during sleep 0.1ml/min)
- Stimulater flow rate (parotids)
- Different kind of stimuli change the proteoma

Sialorrhea

Sialorrhea

Table 5: Some drugs known to be associated with drug-induceddrooling or sialorrhea.

Direct cholinergic/ muscarinic agonists	Bethanechol, pilocarpine, arecoline, cevimeline		
Indirect cholinergic/ muscarinic agonists (acetylcholinesterase inhibitors)	Edrophonium, neostigmine, physostigmine, pyri- dostigmine, metrifonate, donepezil, galantamine, rivastigmine, tacrine		
Antipsychotics	Typical (first generation) antipsychotics: haloperidol, fluphenazine Atypical (second generation) antipsychotics: clozapine, risperidone, olanzapine Reserpine		
Sedative medications	Anticonvulsants-antiepileptics Benzodiazepines		
Adrenergic antagonists (peripheral)	Yohimbine		
Medications irritating the esophagus	Doxycycline, tetracycline, iron preparations, quini- dine, potassium, nonsteroidal anti-inflammatory drugs		
Poisons and toxins	Heavy metals: arsenic, manganese, mercury (inor- ganic volatile), thallium Organophosphates: insecticides, nerve gases (sarin, tabun, soman, VX) Food poisoning: <i>Amanita muscaria</i> Illicit drugs: phencyclidine (PCP)		
Herbal and fruit prepara- tions	Betel nut, jaborandi, yohimbine, citric acid, red pepper		

Table 4: Main causes underlying drooling or sialorrhea.

Drugs See table 5

Neurological Myasthenia gravis

Neurorogical	wyastnenia gravis				
diseases	Cerebral palsy Facial paralysis	Nourological	Maraelle ania anomia		
	Guillain-Barré syndrome	Neurological	Myasthenia gravis		
	Motor neuron disease, notable amyotrophic lateral sclerosis (ALS) Moebius syndrome Cerebrovascular accidents Parkinson's disease Congenital suprabulbar palsy Hydrocephalus Hypoxic encephalopathy Freeman-Sheldon syndrome Psychosis Brain tumors Seizures	diseases	Cerebral palsy		
			Facial paralysis		
			Guillain-Barré syndrome		
			Motor neuron disease, notable amyotrophic lateral sclerosis		
			(ALS)		
			Moebius syndrome		
			Cerebrovascular accidents		
			Parkinson's disease		
	Worster-Drought syndrome		Congenital suprabulbar palsy		
	Landau-Kleffner syndrome Encephalitis		Hydrocephalus		
	Angleman syndrome		Hypoxic encephalopathy		
Systemic diseases	Nasal obstruction		Freeman-Sheldon syndrome		
	Heavy metal poisoning		Psychosis		
	Digestive pathologies:		Brain tumors		
	Oesophageal spasms, tumors and ulcerations, gastric disorders accompanied by nausea and vomiting, pancreatitis, bladder		Seizures		
	processes, intestinal infections		Severe mental retardation, Down syndrome		
Oral conditions	Mucosal ulcerations		Worster-Drought syndrome		
	Teething		Landau-Kleffner syndrome		
	Herpetic ulceration		Encephalitis		
	Traumatic ulceration		Andoman aundroma		
	Oral pain: pulpitis, periodontitis, stomatitis		Angleman synarome		
	lesions				

Sialorrhea due to loss of muscular control rather than hypersalivation

Sialorrhea in Parkinson Disease

- Prevalence 10-84%
- Lewy pathology have been found in the submandibular glands
- Saliva production seems unchanged or even depressed in PD, indicating excessive salivation is not a crucial factor

Adler, Neurology, 2014

- Risk factor for **drooling**: dysphagia, orofacial rigidity/hypomimia, lingual bradykinesia, cognitive status, male gender and more advanced disease stage, non-tremor dominant PD phenotype
- The relationship between drooling and L-Dopa / DBS is still controversial

Sialorrhea

ALS

- Prevalence 20-25%
- not increased production of saliva but inability to swallow secretions (spasticity, weakness, loss of oropharyngeal coordination,...)

Cerebral Palsy

• 10% of patients with CP and post-traumatic encephalopathy

Methods to quantify

✓ Swab method

✓ Sialometry
 ✓ Unstimulated salivary flow rate (uSFR)
 gr/min

✓ Clinical score
 ✓ DSFS (PD, Parkinsonisms, ALS)
 ✓ Sialorrhea Scoring Scale (ALS)
 ✓ Global Impression of Change Scale GICS

Treatment options

- Anticholinergic drugs
- Botulinum Toxin
- Radiotherapy
- Surgery

BotulinumToxin

- Selective block of presynaptic release of acetylcoline from the cholinergic endings supplying eccrine salivary glands.
- Botulinum Toxin injection for excessive drooling was first reported in 1997 and, in the last years, BoNT has emerged as a safe and effective treatment.
- Both serotype A and type B were used (onabotulinumtoxinA, abobotulinumtoxinA and incobotulinumtoxinA, rimabotulinumtoxinB.
- Incobotulinum is **licenced** for chronic sialorrhea in adults.

Ellis, Eur Arch Otorhinolaryngol (1999)

AQP5

Shan, 2013

Botulinum Toxin in Sialorrhea

- Efficacy and safety
- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

Botulinum Toxin in Sialorrhea

• Efficacy and safety

- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

Efficacy and safety

Efficacy and safety of botulinum toxin for treating sialorrhea: A systematic review and meta-analysis

	DU		_	0.0	ntrol			Mean Difference	Mean Difference
Study or Subgroup	Mean [points]	SD [points]	Total	Mean [points]	SD [points]	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.3.1 Adults (100 U Bo	NI-A)								
IncoA_Jost 2019 Subtotal (95% CI)	-1.7	1.7205	74 74	-1.2	1.2	36 36	42.8% 42.8%	-0.50 [-1.05, 0.05] -0.50 [- 1.05, 0.05]	•
Heterogeneity: Not app	olicable								
Test for overall effect: Z	Z = 1.77 (P = 0.08)								
1.3.2 Adults (2500 to 3	3000 U BoNT-B)								
Chinnapongse 2012	-2.2	1.64	12	-1.2	1.37	15	9.8%	-1.00 [-2.16, 0.16]	
Isaacson 2020	-0.89	1.5081	63	-0.19	1.4717	60	47.4%	-0.70 [-1.23, -0.17]	-
Subtotal (95% CI)			75			75	57.2%	-0.75 [-1.23, -0.27]	•
Heterogeneity: Tau ² = (0.00; Chi ² = 0.21, d	f = 1 (P = 0.8)	54); I ² =	0%					
Test for overall effect: Z	Z = 3.07 (P = 0.002)	1							
Total (95% CI)			149			111	100.0%	-0.64 [-1.01, -0.28]	•
			201.12	0.0%					
Heterogeneity: Tau ² = (0.00: Chi ^z = 0.67. d	I = 2(P = 0.0)	1 -=	0.20					
Heterogeneity: Tau² = (Test for overall effect: Z	0.00; Chi² = 0.67, d Z = 3.48 (P = 0.000;	f = 2 (P = 0.7 5)	(2); -=	0.70					
Heterogeneity: Tau² = (Test for overall effect: Z Test for subgroup diffe	0.00; Chi² = 0.67, d Z = 3.48 (P = 0.000) erences: Chi² = 0.49	f=2(P=0./ 5) 5. df=1(P=	0.50).	0%					
Heterogeneity: Tau² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg	0.00; Chi ^z = 0.67, d Z = 3.48 (P = 0.000 rences: Chi ^z = 0.49 BoNT-A)	f = 2 (P = 0.7 5) 5, df = 1 (P =	0.50),	l² = 0%					
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg) Ona4 L in 2008	0.00; Chi [≈] = 0.67, d Z = 3.48 (P = 0.000 rences: Chi [≈] = 0.44 BoNT-A)	f = 2 (P = 0.7 5) 5, df = 1 (P =	0.50),	6.43	1 72	7	47 5%	-1 43 63 21 0 35	
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% CI)	0.00; Chi [≈] = 0.67, d Z = 3.48 (P = 0.000 rences: Chi [≈] = 0.4 BoNT-A) 5	r= 2 (P = 0.7 5) 5, df = 1 (P = 1.55	0.50), 6 6	1² = 0% 6.43	1.72	777	47.5% 47.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35]	
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% CI) Heterogeneity: Not app	0.00; Chi ^z = 0.67, d Z = 3.48 (P = 0.000: rences: Chi ^z = 0.49 BoNT-A) 5	f = 2 (P = 0.7 5) 5, df = 1 (P = 1.55	0.50), 6 6	² = 0% 6.43	1.72	7 7	47.5% 47.5%	-1.43 [-3.21, 0.35] - 1.4 3 [- 3.21, 0.35]	
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000 erences: Chi ² = 0.44 BoNT-A) 5 blicable Z = 1.58 (P = 0.11)	1 = 2 (P = 0.7 5) 5, df = 1 (P = 1.55	0.50), 6 6	1 ² = 0% 6.43	1.72	7 7	47.5% 47.5%	-1.43 [-3.21, 0.35] - 1.4 3 [- 3.21, 0.3 5]	
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000) prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B)	r= 2 (P = 0.7 5) 5, df = 1 (P = 1.55	0.50), 6 6	1 ² = 0% 6.43	1.72	7 7	47.5% 47.5%	-1.43 [-3.21, 0.35] - 1.4 3 [- 3.21, 0.35]	-
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000) prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3	1.55 0 7937	0.50), 6 6 7	1 ² = 0% 6.43	1.72	7777	47.5% 47.5% 52.5%	-1.43 [-3.21, 0.35] - 1. 43 [- 3.21, 0.3 5] -5.00 [-5.83 -4.17]	-
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg l OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% Cl)	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000) prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3	1.55 5, df = 1 (P = 1.55 0.7937	0.50), 6 6 6 7 7 7	i²=0% 6.43 8	1.72 0.7937	7 7 7 7 7	47.5% 47.5% 52.5% 52.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17]	•
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% Cl) Heterogeneity: Not app	0.00; Chi [≈] = 0.67, d Z = 3.48 (P = 0.000) prences: Chi [≈] = 0.44 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3 blicable	1.55 (df = 1 (P = 0.7 5, df = 1 (P = 1.55 0.7937	72); -= 0.50), 6 6 6 7 7 7	i² = 0% 6.43 8	1.72 0.7937	7 7 7 7 7	47.5% 47.5% 52.5% 52.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17]	*
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000 prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3 plicable Z = 11.79 (P < 0.00	r = 2 (P = 0.7 5) 5, df = 1 (P = 1.55 0.7937 001)	0.50), 6 6 6 7 7 7	1 ² = 0% 6.43 8	1.72 0.7937	7 7 7 7	47.5% 47.5% 52.5% 52.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17]	*
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Total (95% CI)	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000) prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3 plicable Z = 11.79 (P < 0.00	r= 2 (P = 0.7 5) 5, df = 1 (P = 1.55 0.7937 001)	(2); -= 0.50), 6 6 7 7 7	l² = 0% 6.43 8	1.72 0.7937	7 7 7 7	47.5% 47.5% 52.5% 52.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17] -3.31 [-6.80, 0.19]	*
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg OnaA_Lin 2008 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Total (95% CI) Heterogeneity: Tau ² = (0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000) prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3 plicable Z = 11.79 (P < 0.00 5.87: Chi ² = 12.71	r= 2 (P = 0.7 5) 5, df = 1 (P = 1.55 0.7937 001) df = 1 (P = 0	2); -= 0.50), 6 6 6 7 7 7	² = 0% 6.43 8	1.72 0.7937	7 7 7 7 14	47.5% 47.5% 52.5% 52.5% 100.0%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17] -3.31 [-6.80, 0.19]	
Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup diffe 1.4.1 Children (2U/ kg l OnaA_Lin 2008 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z 1.4.2 Children (3000 U Basciani 2011 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect: Z Total (95% Cl) Heterogeneity: Tau ² = 5 Test for overall effect: Z	0.00; Chi ² = 0.67, d Z = 3.48 (P = 0.000; prences: Chi ² = 0.49 BoNT-A) 5 blicable Z = 1.58 (P = 0.11) J BoNT-B) 3 blicable Z = 11.79 (P < 0.00 5.87; Chi ² = 12.71, Z = 1.85 (P = 0.06)	r= 2 (P = 0.7 5) 5, df = 1 (P = 1.55 0.7937 001) df = 1 (P = 0	2); -= 0.50), 6 6 6 7 7 7 13 1.0004);	1² = 0% 6.43 8 ; 1² = 92%	0.7937	7 7 7 7 14	47.5% 47.5% 52.5% 52.5%	-1.43 [-3.21, 0.35] -1.43 [-3.21, 0.35] -5.00 [-5.83, -4.17] -5.00 [-5.83, -4.17] -3.31 [-6.80, 0.19]	

Yu, Eur J Neurol. 2022

SIAXI

Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea

Characteristic	Placebo (n = 36)	lncobotulinumtoxinA 75 U (n = 74)	lncobotulinumtoxinA 100 U (n = 74)	Total (N = 184)
Sex, n (%)				
Male	28 (77.8)	50 (67.6)	52 (70.3)	130 (70.7)
Female	8 (22.2)	24 (32.4)	22 (29.7)	54 (29.3)
Age, y, mean (SD)	63.5 (10.6)	65.2 (11.7)	66.0 (11.6)	65.2 (11.4)
Weight, kg, mean (SD)	80.6 (16.4)	78.4 (17.1)	79.8 (14.0)	79.4 (15.7)
BMI, kg/m², mean (SD)	28.5 (6.0)	26.7 (5.2)	27.7 (3.8)	27.5 (4.9)
Drooling etiology, n (%)				
PD	26 (72.2)	51 (68.9)	53 (71.6)	130 (70.7)
Atypical parkinsonism	3 (8.3)	8 (10.8)	5 (6.8)	16 (8.7)
Stroke	6 (16.7)	13 (17.6)	14 (18.9)	33 (17.9)
Traumatic brain injury	1 (2.8)	2 (2.7)	2 (2.7)	5 (2.7)
UPDRS section III score, mean (SD) [n]	29.2 (12.7) [29]	33.1 (17.2) [59]	30.3 (15.1) [58]	31.2 (15.6) [146]
uSFR, g/min, mean (SD)	0.38 (0.23)	0.42 (0.28)	0.40 (0.27)	0.40 (0.26)
DSFS score, mean (SD)	6.97 (1.06)	6.88 (0.91)	6.78 (0.90)	6.86 (0.93)
Concomitant anti-PD medication, n (%) ^a				
Dopaminergic agents	28 (77.8)	57 (77.0)	58 (78.4)	143 (77.7)
Anticholinergic agents ^b	0 (0.0)	2 (2.7)	2 (2.7)	4 (2.2)
Injection guidance, n (%)				
Ultrasound-guided	18 (50.0)	45 (60.8)	41 (55.4)	104 (56.5)
Anatomical landmark-guided	18 (50.0)	29 (39.2)	33 (44.6)	80 (43.5)

Neurology, 2019

Unstimulated salivary flow rate (uSFR)

Drooling Severity and Frequency Scale (DSFS)

C. DSFS sum score change from baseline

AEs 15 (41.7%) - placebo, 32 (43.2%) - incobotulinumtoxinA 75 U, 34 (45.9%) - incobotulinumtoxinA 100 U

The most frequent treatment-related AEs were dry mouth

Neurology, 2019

Botulinum Toxin in Sialorrhea

- Efficacy and safety
- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

- Incobotulinumtoxin A 75-100U
- Rimabotulinumtoxin B 2500U 3500U

Doses

for higher doses further recommandation are needed

Botulinum Toxin in Sialorrhea

- Efficacy and safety
- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

Restivo, Toxin, 2018

The parotid gland provides the bulk of salivary secretion during stimulation, but

• The basal salivary secretion remains debilitating for the patients

70% submandibular and sublingual

Selection of salivary glands

Treatment of 4 SG should be considered for better results

Use of guidance technique (US vs anatonical landmarks)

« the midpoint on the line connecting the tragus to the angle of the mandible, approximately the site of the ear lobe. Deliver injection 1 cm anterior to this..."

"...the midpoint between the **angle of the mandible and the tip of the chin.** Inject 1 finger breath medial to the inferior surface of the mandible at this point»

McGeachan

Localization of Salivary Glands for Botulinum Toxin Treatment: Ultrasound Versus Landmark Guidance

Sebastian Loens, MD,1,* Norbert Brüggemann, MD,1,2 Armin Steffen, MD,3 and Tobias Bäumer, MD1

For both glands, the optimal position was located posteriorly with a mean **horizontal deviation of 21 mm** for the PG and **19.6 mm for the SG**, resulting in a significant difference in thickness between the LM and US positions for both glands.

Loens, MOVEMENT DISORDERS CLINICAL PRACTICE 2020

Use of guidance technique (US vs anatonical landmarks)

US – guide in particular for first treatment is highly recommended

- Efficacy and safety
- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

✓ Clinical score

✓ Drooling Severity and Frequency Scale (DSFS) (PD, Parkinsonisms, ALS, CP)

- ✓ Sialorrhea Scoring Scale (ALS)
- ✓ Sialorrhea Clinical Scale for PD (SCS-PD)
- ✓ The Radboud Oral Motor Inventory for PD subscale for saliva (ROMP-S)
- ✓ Global Impression of Change Scale GICS

The Drooling Score equals the sum of the Severity and Frequency sub-scores.

Drooling Severity Scale

- 1 = Never drools, dry
- 2 = Mild-drooling, only lips wet
- 3 = Moderate- drool reaches the lips and chin
- 4 = Severe- drool drips off chin & onto clothing
- 5 = Profuse- drooling off the body and onto objects (furniture, books)

Drooling Frequency Scale

- 1 = No drooling
- 2 = Occasionally drools
- 3 = Frequently drools
- 4 = Constant drooling

- Efficacy and safety
- Doses
- Selection of salivary glands
- Use of guidance technique (US vs anatonical landmarks)
- Outcome measures
- Long term treatment of chronic scialorrhea

Jost, Parkinsonism and Related Disorders, 2020

.

Long-term incobotulinumtoxinA treatment for sialorrhea

-5.0

Unstimulated salivary flow rate (uSFR)

the incidence of AEs per treatment cycle during the extension period (35.6–43.6%) was **similar** to that reported for incobotulinumtoxinA recipients in Cycle 1 in the main period (44.6%)

Jost, Parkinsonism and Related Disorders, 2020

8 year of follow-up Failure in 11% of treatments. AboBoNT 250U RimaBoNT 2500U

Petracca, 2015

Long term treatment of chronic scialorrhea

Long term treatment showed convincing rate of safety and efficacy

Article Safety of High-Dose Botulinum Toxin Injections for Parotid and Submandibular Gland Radioprotection

Joerg Mueller ^{1,*}, Thomas Langbein ², Aditi Mishra ³ and Richard P. Baum ³

Patient	PG Right IncoA (Units)	SMG Left IncoA (Units)	Total Dose IncoA (Units)	Adverse Event	AE Severity
1	100	50	150	Painful swallowing	Mild
2	100	50	150	-	-
3	120	70	190	Dry mouth	Mild
4	120	70	190	-	-
5	130	70	200	Dry mouth	Mild
6	170	80	250	Dry mouth *	Moderate *
7	170	80	250	Dry mouth	Mild
8	170	80	250	Dry mouth *	Moderate *
9	170	80	250	Dry mouth	Mild
10	170	80	250	Dry mouth	Mild

Table 1. Botulinum Toxin (IncoA) treatment details and adverse events.

PG = Parotid gland, SMG = Submandibular gland, * moderate pre-existing xerostomia.

Mueller, Toxins, 2022

Grazie per l'attenzione

