Probing Inflammatory Neurodegeneration in Multiple Sclerosis with Sector-to-Channel Correlation between mfVEP and OCT

S. C. Huang¹, M. Pisa^{1,2}, S., Guerrieri^{1,2}, G. Dalla Costa^{1,2}, G. Comi^{2,3}, L. Leocani^{1,2}

¹Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, Scientific Institute San Raffaele, Milan, Italy ²University Vita-Salute San Raffaele, Milan, Italy ³Casa di Cura del Policlinico, Milan, Italy *20/05/2022, 66° Congresso Nazionale SINC, Palermo, Italy*

un mondo libero dalla SM

Retina: Window to the Brain

Retina: Most accessible CNS extension

- Similarities: anatomy, function, response to insult, immunology
- Major neurodegenerative disorders reflected in the retina
- Technical advances in ocular imaging / function
- Convenient platform to study CNS diseases and therapies

Optical Coherence Tomography

- Principle: equivelant to ultrasound.
- Thickness of the layers can be quantified as axonal/neuronal/dendritic loss

Optical Coherence Tomography

- Principle: equivelant to ultrasound.
- Thickness of the layers can be quantified as axonal/neuronal/dendritic loss

RNFL = retinal nerve fiber layer; GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer;

Optical Coherence Tomography

- Principle: equivelant to ultrasound.
- Thickness of the layers can be quantified as axonal/neuronal/dendritic loss

RNFL = retinal nerve fiber layer; GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer;

<u>Multi-focal Visual Evoked Potential & OCT</u>

<u>Multi-focal Visual Evoked Potential & OCT</u>

Macula volume

Multi-focal Visual Evoked Potential & OCT

Structural Measure

OCT Sector to mfVEP Channel correlation

Central 32 channels

OCT Sector to mfVEP Channel correlation

OCT Sector to mfVEP Channel correlation

Optic Radiation and Visual Field

Optic Radiation and Visual Field

Subject Demographic

	Healthy (N = 30)	PPMS (N = 17)	SPMS (N = 20)
Gender (M/F)	9/21	13/4	8/12
Age (y)	32,2 ± 9,8	45,6 ± 11,1	47,5 ± 7,2
Disease Duration (y)	-	2,7 ± 1,0	14,0 ± 8,8
Progression duration (y)	-	2,7 ± 1,0	1,7 ± 1,4
EDSS	-	$4,6 \pm 0,9$	5,3 ± 1,3
Eyes with ON (N))	-	5	10
Global pRNFL thickness(µm)	98,7 ± 9,1	94,4 ± 10,1	90,2 ± 8,4

- people with <u>newly-confirmed</u> progressive MS consecutively enrolled from fall 2015 to summer 2018 (PPMS: primary progressive MS; SPMS: secondary progressive MS)
- Left and right eyes were averaged (in case of no history of ON in both eyes)
- Only Eyes <u>without history of optic neuritis</u> (ON) and <u>with normal global peripapillary</u> <u>RNFL</u> (pRNFL) thickness were used.

Subject Demographic

	Healthy (N = 30)	PPMS (N = 17)	SPMS (N = 20)
Gender (M/F)	9/21	13/4	8/12
Age (y)	32,2 ± 9,8	45,6 ± 11,1	47,5 ± 7,2
Disease Duration (y)	-	2,7 ± 1,0	14,0 ± 8,8
Progression duration (y)	-	2,7 ± 1,0	1,7 ± 1,4
EDSS	-	4,6 ± 0,9	5,3 ± 1,3
Eyes with ON (N))	-	5	10
Global pRNFL thickness(µm)	98,7 ± 9,1	94,4 ± 10,1	90,2 ± 8,4

- people with <u>newly-confirmed</u> progressive MS consecutively enrolled from fall 2015 to summer 2018 (PPMS: primary progressive MS; SPMS: secondary progressive MS)
- Left and right eyes were averaged (in case of no history of ON in both eyes)
- Only Eyes <u>without history of optic neuritis</u> (ON) and <u>with normal global peripapillary</u> <u>RNFL</u> (pRNFL) thickness were used.

Subject Demographic

	Healthy (N = 30)	PPMS (N = 17)	SPMS (N = 20)
Gender (M/F)	9/21	13/4	8/12
Age (y)	32,2 ± 9,8	45,6 ± 11,1	47,5 ± 7,2
Disease Duration (y)	-	2,7 ± 1,0	14,0 ± 8,8
Progression duration (y)	-	2,7 ± 1,0	1,7 ± 1,4
EDSS	-	4,6 ± 0,9	5,3 ± 1,3
Eyes with ON (N))	-	5	10
Global pRNFL thickness(µm)	98,7 ± 9,1	94,4 ± 10,1	90,2 ± 8,4

- people with <u>newly-confirmed</u> progressive MS consecutively enrolled from fall 2015 to summer 2018 (PPMS: primary progressive MS; SPMS: secondary progressive MS)
- Left and right eyes were averaged (in case of no history of ON in both eyes)
- Only Eyes <u>without history of optic neuritis</u> (ON) and <u>with normal global peripapillary</u> <u>RNFL</u> (pRNFL) thickness were used.

Group comparison: mfVEP parameters

• Amplitude and relative latency of every channel were quantified. *Malmqvist et al., 2016*

Healthy

Amplitude

relative Latency

Group comparison: mfVEP parameters

• Amplitude and relative latency of every channel were quantified. *Malmqvist et al., 2016*

t-test

P<0,01

Group comparison: mfVEP parameters

• Amplitude and relative latency of every channel were quantified. *Malmqvist et al., 2016*

Group comparison: OCT parameters

Group comparison: OCT parameters

Group comparison: OCT parameters

Sector-to-Channel Correlation

Sector-to-Channel Correlation

- In PPMS, the amplitude was correlated with:
 - Positive correlation with GCIPL
 - Negative correlation with INL
- Smaller amplitude: more axonal loss
- Thinnr GCIPL: more neuronal/dendritic loss
- Thicker INL: higher inflammation
- The results suggest that the integrity of axons within the optic radiation is correlated with the neuronal/dendritic loss and inflammatory in the retina

- In PPMS, the amplitude was correlated with:
 - Positive correlation with GCIPL
 - Negative correlation with INL
- Smaller amplitude: more axonal loss
- Thinnr GCIPL: more neuronal/dendritic loss
- Thicker INL: higher inflammation
- The results suggest that the integrity of axons within the optic radiation is correlated with the neuronal/dendritic loss and inflammatory in the retina

Trans-synaptic retrograde degeneration?

- In PPMS, the amplitude was correlated with:
 - Positive correlation with GCIPL
 - Negative correlation with INL
- Smaller amplitude: more axonal loss
- Thinnr GCIPL: more neuronal/dendritic loss
- Thicker INL: higher inflammation
- The results suggest that the integrity of axons within the optic radiation is correlated with the neuronal/dendritic loss and inflammatory in the retina

Trans-synaptic retrograde degeneration?

- In SPMS, the latency was negatively correlated with GCIPL thickness, especially the IPL thickness, while almost no significant GCIPL atrophy was found.
- Longer latency, which reflects demyelination, has been reported to be an early sign of neurodegeneration. You et al., 2019
- IPL thinning suggests dendritic atrophy, which is also an early sign of neuronal death. *Merten et al.*, 2020
- This correlation may be an sign of the transsynaptic degeneration among the visual pathway

- In SPMS, the latency was negatively correlated with GCIPL thickness, especially the IPL thickness, while almost no significant GCIPL atrophy was found.
- Longer latency, which reflects demyelination, has been reported to be an early sign of neurodegeneration. You et al., 2019
- IPL thinning suggests dendritic atrophy, which is also an early sign of neuronal death. *Merten et al.*, 2020
- This correlation may be an sign of the transsynaptic degeneration among the visual pathway

- In SPMS, the latency was negatively correlated with GCIPL thickness, especially the IPL thickness, while almost no significant GCIPL atrophy was found.
- Longer latency, which reflects demyelination, has been reported to be an early sign of neurodegeneration. You et al., 2019
- IPL thinning suggests dendritic atrophy, which is also an early sign of neuronal death. *Merten* et al., 2020
- This correlation may be an sign of the transsynaptic degeneration among the visual pathway

Conclusion

- The sector-to-channel correlation between OCT and mfVEP provides a tool to study the relationship and propagation of inflammation/demyelination and neurodegeneration *in vivo*.
 - In PPMS, correlation was found between mfVEP amplitude and OCT parameters(GCIPL and INL). A hint of ongoing inflammation in optic radiation resulted in retrograde degeneration in the retina?
 - In SPMS, IPL seems to be the early responder to the process of trans-synaptic neurodegeneration
 - Future direction
 - Bigger sample size to confirm the current observation
 - Correlate with other modalities and clinical features to better explain the results
 - MRI
 - Cognitive state
 - EDSS
 - Visual function
 - Motor function
 - Biopsy/post-mortem study