Programma Neurofisiologia Clinica Pediatrica

Programma per la formazione e certificazione in EEG e PE in Neurofisiologia Clinica Pediatrica

Programma per la formazione e certificazione in EEG e PE in Neurofisiologia Clinica Pediatrica

Per ogni metodica è richiesta la conoscenza dei concetti di maturazione e sviluppo anatomo-funzionale, dei dati normativi per le diverse fasce d’età dal prematuro al bambino/adolescente e le applicazioni cliniche peculiari nell'età neonatale e pediatrica.

Basi tecnologiche della registrazione EEG
Caratteristiche degli strumenti di registrazione. La digitalizzazione del segnale. Elettrodi, derivazioni e montaggi. Il sistema 10/20. I concetti di filtro e campionamento. Principi di analisi del segnale. Le poligrafie e le video-poligrafie.

Fondamenti di base dell’EEG
Neurofisiologia della cellula nervosa. Il processo di generazione e trasmissione del potenziale d’azione. Basi neurofisiologiche del segnale EEG. Ritmi fisiologici cerebrali e loro generatori. Patterns elettrofisiologici dell’attività cerebrale in veglia e sonno.

La maturazione del EEG
L’EEG normale: neonato pretermine e neonato a termine, ontogenesi dell’EEG dalla 24° alla 44° settimana, le fasi comportamentali ed il ritmo sonno-veglia (pattern maturativi), l’EEG nel lattante fino ai 2 anni di età; l’EEG nel bambino-adulto: criteri di normalità, ritmo di veglia, prove di attivazione e fasi del sonno.

EEG ed Epilessia
Meccanismi di base dell’epilettogenesi. Pattern EEG di tipo epilettico critici ed intercritici nel neonato e nel bambino (peculiarità e differenze). EEG nelle varie forme focali e diffuse di epilessia. EEG nello stato epilettico, convulsivo e non convulsivo.

EEG e patologie del SNC
Disturbi del sonno, tumori cerebrali, traumi cranici, malattie cerebrovascolari , malattie cerebrali infettive/infiammatorie, malattie sistemiche e dismetaboliche, errori congeniti del metabolismo, patologie malformative, patologia psichiatrica, cefalea/emicrania EEG nelle encefalopatie epilettiche e correlazioni EEG genotipo.

Pattern EEG peculiari dei disordini dello sviluppo nervoso.

Effetti farmacologici sul tracciato EEG.
Ansiolitici, antidepressivi, antipsicotici, anestetici.

EEG in area critica.
EEG nell’encefalopatia ipossico-ischemica del neonato (nozioni riguardanti l’ipotermia terapeutica), nei disturbi di coscienza del bambino (coma). EEG pattern discontinui-pattern continui, reattività . Individuazione di patterns prognostici. Monitoraggio EEG intraoperatorio: concetti baseMetodiche di registrazione della morte cerebrale (DM Ministero Salute 11/4/2008, GU n.136 12/6/2008) dal neonato e bambino < 12 mesi (normativa) all’adulto.

Tecniche Speciali.
Registrazioni EEG con elettrodi speciali e intracerebrali. MagnetoEncefalografia, EEG ad alta densità.
Conoscenze generali su Registrazioni EEG con elettrodi speciali e intracerebrali.

 

Glossario e refertazione EEG

Principi neurofisiologici e tecnici dei potenziali evocati.
Conoscenza dei concetti di maturazione e sviluppo anatomo-funzionale dal recettore alla corteccia e le modificazioni maturative delle principali vie nervose.
Caratteristiche degli strumenti e degli accessori. Il concetto di potenziale di campo. Il concetto di potenziale viaggiante. Il volume condotto.

I Potenziali Evocati in area pediatrica/neonatale.
Peculiarità dell’applicazione 0-2 anni:- la gestione del rapporto con i genitori; - l’effetto dell’immaturità recettoriale; - le conseguenze della nascita pretermine; - ruolo dei potenziali evocati multimodali nelle patologie età dipendenti (ritardo/regressione psicomotoria, sindromi genetiche rare ad esordio pediatrico; - la valutazione integrata dei sistemi visivo ed uditivo in neurotologia e neuroftalmologia pediatrica).
Metodiche specifiche per la registrazione dei PE nel neonato e nel bambino < due anni (filtri, frequenza stimolo, tipologia elettrodi).

I Potenziali Evocati Somatosensoriali (SEP).
Modalità di esecuzione ed interpretazione dei SEP a breve latenza (arti superiori ed inferiori). SEP sacrali. SEP dermatomerici. SEP a lunga latenza.

I Potenziali Evocati Motori (MEP).
Caratteristiche della stimolazione magnetica. Modalità di esecuzione ed interpretazione dei MEP (arti superiori ed inferiori). MEP da stimolazione elettrica (applicazione intraoperatoria).

I Potenziali Evocati Visivi (VEP).
La stimolazione pattern-reversal. La stimolazione da flash. Modalità di esecuzione ed interpretazione dei VEP (flash e pattern reversal) e dell’Elettroretinogramma (ERG).

I Potenziali Evocati Acustici/Troncoencefalici (BAEP/BAER/ABR).
Caratteristiche dello stimolo. Il concetto di soglia. I generatori della risposta. Modalità di esecuzione ed interpretazione dei BAEP.

I Potenziali Evocati Evento Correlati (ERP).
La risposta P300 uditiva: modalità di esecuzione ed interpretazione. Il concetto di MismatchNegativity (MMN). Applicazioni in area critica

Tecniche Speciali.
Elettroretinogramma, otoemissioni acustiche, ABR automatico

 

Programma per la formazione e certificazione in ENMG e PE in Neurofisiologia Clinica Pediatrica

Principi di Base.
Fondamenti su sviluppo, fisiologia della maturazione ed anatomia del sistema nervoso periferico, della giunzione neuromuscolare e del muscolo. Il processo di generazione e trasmissione del potenziale d’azione. Proprietà ed organizzazione dell’unità motoria. Fisiologia del nervo periferico, della giunzione neuromuscolare e del muscolo scheletrico. Influenza della temperatura su nervo, placca neuromuscolare e muscolo. Principi di biostatistica: i dati normativi.

Fondamenti di elettricità ed elettronica.
Concetti di: voltaggio, corrente, resistenza, impedenza, capacitanza, induttanza, legge di Ohm, terra, amplificazione, amplificatori differenziali, filtri, campionamento, digitalizzazione, averaging, common mode rejection. Componenti elettromiografo e tipi di elettrodi. Proprietà dei generatori bioelettrici. Volume condotto. Igiene e sterilizzazione elettrodi. Sicurezza elettrica.

Elettroneuromiografia in età pediatrica.
Modalità di registrazione: peculiarità nel neonato e bambino < due anni di età (tecniche di registrazioni ad-hoc, filtri, stimolatori, grandezza elettrodi..), protocolli di valutazione mirati e dati normativi (effetti età-dipendente, crescita somatica-dipendente).

Neurografia
Conduzione motoria. Conduzione sensitiva ortodromica ed antidromica. Esami dei singoli nervi motori e sensitivi. Le risposte tardive: H ed F. Blocco di conduzione nervosa e dispersione temporale. Parametri elettrofisiologici e criteri diagnostici per la demielinizzazione e la degenerazione assonale. Artefatti ed errori negli studi neurografici.

Elettromiografia ad ago concentrico.
Attività spontanea. Caratteristiche e metodi di analisi del potenziale di Unità Motoria (PUM). PUM nelle lesioni del secondo motoneurone e dell’assone. PUM nelle miopatie. Analisi del tracciato da sforzo ed interferenziale.

Esplorazione della giunzione neuromuscolare.
La stimolazione ripetitiva. L'EMG a singola fibra.

Tecniche speciali.
Blink reflex. Risposta simpatica cutanea.

Correlazioni clinico-elettrofisiologiche.
Reperti elettrofisiologici nelle atrofie muscolari spinali, neuropatie genetiche ed acquisite, miastenie congenite, miopatie e distrofie muscolari) Diagnosi differenziale della sindrome del floppy infant.

 

Glossario e refertazione in ENMG

Principi neurofisiologici e tecnici dei potenziali evocati.
Conoscenza dei concetti di maturazione e sviluppo anatomo-funzionale dal recettore alla corteccia e le modificazioni maturative delle principali vie nervose.
Caratteristiche degli strumenti e degli accessori. Il concetto di potenziale di campo. Il concetto di potenziale viaggiante. Il volume condotto.

I Potenziali Evocati in area pediatrica/neonatale.
Peculiarità dell’applicazione 0-2 anni:- la gestione del rapporto con i genitori; - l’effetto dell’immaturità recettoriale; - le conseguenze della nascita pretermine; - ruolo dei potenziali evocati multimodali nelle patologie età dipendenti (ritardo/regressione psicomotoria, sindromi genetiche rare ad esordio pediatrico; - la valutazione integrata dei sistemi visivo ed uditivo in neurotologia e neuroftalmologia pediatrica).
Metodiche specifiche per la registrazione dei PE nel neonato e nel bambino < due anni (filtri, frequenza stimolo, tipologia elettrodi).

I Potenziali Evocati Somatosensoriali (SEP).
Modalità di esecuzione ed interpretazione dei SEP a breve latenza (arti superiori ed inferiori). SEP sacrali. SEP dermatomerici. SEP a lunga latenza.

I Potenziali Evocati Motori (MEP).
Caratteristiche della stimolazione magnetica. Modalità di esecuzione ed interpretazione dei MEP (arti superiori ed inferiori). MEP da stimolazione elettrica (applicazione intraoperatoria).

I Potenziali Evocati Visivi (VEP).
La stimolazione pattern-reversal. La stimolazione da flash. Modalità di esecuzione ed interpretazione dei VEP (flash e pattern reversal) e dell’Elettroretinogramma (ERG).

I Potenziali Evocati Acustici/Troncoencefalici (BAEP/BAER/ABR).
Caratteristiche dello stimolo. Il concetto di soglia. I generatori della risposta. Modalità di esecuzione ed interpretazione dei BAEP.

I Potenziali Evocati Evento Correlati (ERP).
La risposta P300 uditiva: modalità di esecuzione ed interpretazione. Il concetto di MismatchNegativity (MMN). Applicazioni in area critica

Tecniche Speciali.
Elettroretinogramma, otoemissioni acustiche, ABR automatico

 

Bibliografia per la formazione e certificazione in EEG e PE in Neurofisiologia Clinica Pediatrica

TESTI, RACCOMANDAZIONI, LINEE GUIDA

Niedermeyer E, Lopes da Silva F. Electroencephalography: Basic Principles, Clinical Applications. Quinta Edizione, 2012, Lippincott Williams & Wilkins: Philadelphia

Crespel A, Gélisse P. Atlas of electroencephalography: EEG awake and sleep EEG, 2005, John LibbeyEurotext, Paris

Mecarelli O. Manuale teorico pratico di elettroencefalografia. 2009, Wolters Kluwer Health.Versione on line: http://appitaliane.it/iphone-ipad/medicina/eeg-guide-bhvibrs.html.

EEG, Paediatric Neurophysiology, Special Techniques and Applications. Clinical Neurophysiology, Volume 2, 2003 Elsevier, Amsterdam

Chiappa KH. Evoked Potentials in Clinical Medicine. Third Edition 1997.Lippincot Raven

Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the IFCN (1999) scaricabile gratuitamente da http://www.clinph-journal.com/content/guidelinesIFCN

Clinical neurophysiology of infancy, childhood, and adolescence/Gregory L. Holmes,. Solomon L. Moshé, H. Royden Jones, Jr.—1st ed. p. cm. ISBN 0-7506-7251

Cruccu G, Curio G, Guerit JM, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 2008: 119:1705-1719.

Chen R, Cros D, Currà A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committe. Clin Neurophysiol 2008;119:504-532.

Holder GE, Celesia GC, Miyake Y, et al. International Federation of Clinical Neurophysiology. Recommendation for visual testing. Clin Neurophysiol 2010;121:1393-1409

Miniussi C, Paulus W, Rossini PM, eds. Transcranial Brain Stimulation Frontiers in Neuroscience book series). CRC Press by Taylor and Francis Group, Boca Raton (FL), 2012.

Guidelines International Federation of Clinical Neurophysiology http://www.ifcn.info/guidelines.aspx?MenuID=1169

• Safety, ethical considerations, and application guidelines for the use of Transcranial Magnetic Stimulation in clinical practice and research. A consensus statement from the International Workshop on Present and Future of TMS: Safety and Ethical Guidelines.
• Evoked Potentials
• Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from the IFCN Committe
• A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN Committee
• The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee.
• Recommendations for the clinical use of somatosensory evoked potentials.Recommendations for visual system testing.

• Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400.

• Current status on electrodiagnostic standards and guidelines in neuromuscular disorders

EEG

1: Britton JW, Frey LC, Hopp JL, Korb P, Koubeissi MZ, Lievens WE, Pestana-Knight EM, St. Louis EK; St. Louis EK, Frey LC, editors. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. Chicago: American Epilepsy Society; 2016. Available from http://www.ncbi.nlm.nih.gov/books/NBK390354/PubMed PMID: 27748095.

1: Dereymaeker A, Pillay K, Vervisch J, De Vos M, Van Huffel S, Jansen K, Naulaers G. Review of sleep-EEG in preterm and term neonates. Early Hum Dev. 2017 Oct;113:87-103. doi: 10.1016/j.earlhumdev.2017.07.003. Epub 2017 Jul 12. PubMed PMID: 28711233.

2: Pavlidis E, Lloyd RO, Mathieson S, Boylan GB. A review of important electroencephalogram features for the assessment of brain maturation in premature infants. ActaPaediatr. 2017 Sep;106(9):1394-1408. doi: 10.1111/apa.13956. Review. PubMed PMID: 28627083.

3: Pavlidis E, Lloyd RO, Boylan GB. EEG - A Valuable Biomarker of Brain Injury in Preterm Infants. DevNeurosci. 2017;39(1-4):23-35. doi: 10.1159/000456659. Epub 2017 Apr 13. Review. PubMed PMID: 28402972.

4: Chandrasekaran M, Chaban B, Montaldo P, Thayyil S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J Perinatol. 2017 Jun;37(6):684-689. doi: 10.1038/jp.2017.14. Epub 2017 Mar 2. Review. PubMed PMID: 28252661.

5: Fogtmann EP, Plomgaard AM, Greisen G, Gluud C. Prognostic Accuracy of Electroencephalograms in Preterm Infants: A Systematic Review. Pediatrics. 2017 Feb;139(2). pii: e20161951. doi: 10.1542/peds.2016-1951. Review. PubMed PMID: 28143915.

6: Del Río R, Ochoa C, Alarcon A, Arnáez J, Blanco D, García-Alix A. Amplitude Integrated Electroencephalogram as a Prognostic Tool in Neonates with Hypoxic-Ischemic Encephalopathy: A Systematic Review. PLoS One. 2016 Nov 1;11(11):e0165744. doi: 10.1371/journal.pone.0165744. eCollection 2016. Review. zPubMed PMID: 27802300; PubMed Central PMCID: PMC5089691.

7: Yao D, Deng X, Wang M. Neonatal electroencephalography recordings: a review. Minerva Pediatr. 2016 Jul 21. [Epub ahead of print] PubMed PMID: 27441493.

8: Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015 Dec;33:90-8. doi: 10.1016/j.seizure.2015.09.014. Epub 2015 Sep 26. Review. PubMed PMID: 26456517.

9: Awal MA, Lai MM, Azemi G, Boashash B, Colditz PB. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review. ClinNeurophysiol. 2016 Jan;127(1):285-296. doi: 10.1016/j.clinph.2015.05.018. Epub 2015 May 31. Review. PubMed PMID: 26105684.

10: Lamblin MD, Walls Esquivel E, André M. The electroencephalogram of the full-term newborn: review of normal features and hypoxic-ischemic encephalopathy patterns. NeurophysiolClin. 2013 Dec;43(5-6):267-87. doi: 10.1016/j.neucli.2013.07.001. Epub 2013 Aug 19. Review. PubMed PMID: 24314754.

POTENZIALI EVOCATI
SEP

1. Amantini A, Carrai R, Lori S, Peris A, Amadori A, Pinto F, Grippo A. Neurophysiological monitoring in adult and pediatric intensive care. Minerva Anestesiol. 2012 Sep;78(9):1067-75. Epub 2012 Jun 7. Review. PubMed PMID:22672930.

2. Lori S, Bertini G, Molesti E, Gualandi D, Gabbanini S, Bastianelli ME, Pinto F, Dani C. The prognostic role of evoked potentials in neonatal hypoxic-ischemic insult. J Matern Fetal Neonatal Med. 2011 Oct;24Suppl 1:69-71. doi: 10.3109/14767058.2011.607661. Epub 2011 Aug 31. Review. PubMed PMID: 21878035.

3. Carrai R, Grippo A, Lori S, Pinto F, Amantini A. Prognosticvalue of somatosensory evoked potentials in comatose children: a systematic literature review. Intensive Care Med. 2010 Jul;36(7):1112-26. doi: 10.1007/s00134-010-1884-7. Epub 2010 Apr 27. Review. PubMed PMID: 20422151.

4. Suppiej A, Cappellari A, Franzoi M, Traverso A, Ermani M, Zanardo V. Bilateral loss of cortical somatosensory evoked potential at birth predicts cerebral palsy in term and near-term newborns. Early Hum Dev. 2010 Feb;86(2):93-8. doi: 10.1016/j.earlhumdev.2010.01.024.

5. Trollmann R, Nüsken E, Wenzel D. Neonatal somatosensory evoked potentials: maturational aspects and prognostic value. Pediatr Neurol. 2010 Jun;42(6):427-33. doi: 10.1016/j.pediatrneurol.2009.12.007. PubMed PMID: 20472196.

6. Lori S, Gabbanini S, Bastianelli M, Bertini G, Corsini I, Dani C. Multimodal neurophysiological monitoring in healthy infants born at term: normative continuous somatosensory evoked potentials data. Dev Med Child Neurol. 2017 Sep;59(9):959-964. doi: 10.1111/dmcn.13430. Epub 2017 Apr 22. PubMed PMID: 28432693.

7. Doria-Lamba L, Montaldi L, Grosso P, Veneselli E, Giribaldi G. Short latency evoked somatosensory potentials after stimulation of the median nerve in children: normative data. J ClinNeurophysiol. 2009 Jun;26(3):176-82. doi: 10.1097/WNP.0b013e3181a76a56. PubMed PMID: 19424081.

8. Tombini M, Pasqualetti P, Rizzo C, Zappasodi F, Dinatale A, Seminara M, Ercolani M, Rossini PM, Agostino R. Extrauterine maturation of somatosensory pathways in preterm infants: a somatosensory evoked potential study. Clin Neurophysiol. 2009 Apr;120(4):783-9. doi: 10.1016/j.clinph.2008.12.032.

9. Boor R, Li L, Goebel B, Reitter B. Subcortical somatosensory evoked potentials after posterior tibial nerve stimulation in children. Brain Dev. 2008 Sep;30(8):493-8. doi: 10.1016/j.braindev.2007.06.010. Epub 2008 Jul 7. PubMed PMID: 18606513.

10. Boor R, Goebel B, Doepp M, Taylor MJ. Somatosensory evoked potentials after posteriortibial nerve stimulation--normative data in children. Eur J Paediatr Neurol. 1998;2(3):145-52. PubMed PMID: 10726836.

11. Boor R, Goebel B, Taylor MJ. Subcortical somatosensory evoked potentials after median nerve stimulation in children. Eur J Paediatr Neurol. 1998;2(3):137-43. PubMed PMID: 10726835.

12. Pike AA, Marlow N, Dawson C. Posterior tibial somatosensory evoked potentials in very preterm infants. Early Hum Dev. 1997 Jan 3;47(1):71-84. PubMed PMID: 9118831.

13. George SR, Taylor MJ. Somatosensory evoked potentials in neonates and infants: developmental and normative data. ElectroencephalogrClinNeurophysiol. 1991 Mar-Apr;80(2):94-102. PubMed PMID: 1707810.
14. Dachy B. Does sensitivity to arousal improve the prognostic value of somatosensory evoked potentials in newborn infants? Dev Med Child Neurol. 2017 Sep;59(9):890. doi: 10.1111/dmcn.13505.

15. Nevalainen P, Marchi V, Metsäranta M, Lönnqvist T, Toiviainen-Salo S, Vanhatalo S, Lauronen L. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin Neurophysiol. 2017 Jul;128(7):1337-1343. doi: 10.1016/j.clinph.2017.04.025.

16. Nevalainen P, Lauronen L, Metsäranta M, Lönnqvist T, Ahtola E, Vanhatalo S. Neonatal somatosensory evoked potentials persist during hypothermia. Acta Paediatr. 2017 Jun;106(6):912-917. doi: 10.1111/apa.13813.

STIMOLAZIONE MAGNETICA TRANSCRANICA

1. Säisänen L, Julkunen P, Lakka T, Lindi V, Könönen M, Määttä S. Development of
corticospinal motor excitability and cortical silent period from mid-childhood to
adulthood - a navigated TMS study. NeurophysiolClin. 2017 Dec 20.pii:
S0987-7053(17)30168-5. doi: 10.1016/j.neucli.2017.11.004.

2. Allen CH, Kluger BM, Buard I. Safety of Transcranial Magnetic Stimulation in
Children: A Systematic Review of the Literature. Pediatr Neurol. 2017
Mar;68:3-17. doi: 10.1016/j.pediatrneurol.2016.12.009..

3. Narayana S, Papanicolaou AC, McGregor A, Boop FA, Wheless JW. Clinical
Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. J Child
Neurol. 2015 Aug;30(9):1111-24. doi: 10.1177/0883073814553274.

4. Narayana S, Rezaie R, McAfee SS, Choudhri AF, Babajani-Feremi A, Fulton S,
Boop FA, Wheless JW, Papanicolaou AC. Assessing motor function in young children
withtranscranial magnetic stimulation. Pediatr Neurol. 2015 Jan;52(1):94-103.
doi: 10.1016/j.pediatrneurol.2014.08.031.

5. Garvey MA, Mall V. Transcranial magnetic stimulation in children. Clin
Neurophysiol. 2008 May;119(5):973-84. doi: 10.1016/j.clinph.2007.11.048.

6. Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic
stimulation in child neurology: current and future directions. J Child Neurol. 2008 Jan;23(1):79-96.

POTENZIALI EVOCATI ACUSTICI e POTENZIALI EVENTO CORRELATI

1. Scaioli V, Brinciotti M, Di Capua M, Lori S, Janes A, Pastorino G, Peruzzi C, Sergi P, Suppiej A. A Multicentre Database for Normative Brainstem Auditory Evoked Potentials (BAEPs) in Children: Methodology for Data Collection and Evaluation. Open Neurol J. 2009 Oct 9;3:72-84. doi: 10.2174/1874205X00903010072. PubMed PMID: 19911069; PubMed Central PMCID: PMC2775124.

2. Stephen JM, Hill DE, Peters A, Flynn L, Zhang T, Okada Y. Development of Auditory Evoked Responses in Normally Developing Preschool Children and Children with Autism Spectrum Disorder. Dev Neurosci. 2017;39(5):430-441. doi: 10.1159/000477614.

3. Vlaskamp C, Oranje B, Madsen GF, Møllegaard Jepsen JR, Durston S, Cantio C, Glenthøj B, Bilenberg N. Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Res. 2017 Nov;10(11):1857-1865. doi: 10.1002/aur.1821.

4. Jiang ZD, Chen C. Short-term outcome of functional integrity of the auditory brainstem in term infants who suffer perinatal asphyxia. J Neurol Sci. 2017 May 15;376:219-224. doi: 10.1016/j.jns.2017.03.036.

5. Cubero-Rego L, Ricardo-Garcell J, Corsi-Cabrera M, Cruz-Martínez R, Rebolledo-Fernández C, Otero-Ojeda G, Harmony T. Improving the efficiency of Auditory Brainstem Responses in newborns, using a 60clicks/s stimulation rate. J Clin Neurosci. 2017 Nov;45:299-304. doi: 10.1016/j.jocn.2017.08.044.

6. Stuermer KJ, Foerst A, Sandmann P, Fuerstenberg D, Lang-Roth R, Walger M. Maturation of auditory brainstem responses in young children with congenital monaural atresia. Int J Pediatr Otorhinolaryngol. 2017 Apr;95:39-44. doi: 10.1016/j.ijporl.2017.01.029.

7. Bakhos D, Marx M, Villeneuve A, Lescanne E, Kim S, Robier A. Electrophysiological exploration of hearing. Eur Ann Otorhinolaryngol Head Neck Dis. 2017 Oct;134(5):325-331. doi: 10.1016/j.anorl.2017.02.011.

8. Yang HC, Sung CM, Shin DJ, Cho YB, Jang CH, Cho HH. Newborn hearing screening
in prematurity: fate of screening failures and auditory maturation. Clin Otolaryngol. 2017 Jun;42(3):661-667. doi: 10.1111/coa.12794.

9. Jiang ZD, Wang C. Abnormal findings in brainstem auditory evoked response at 36-37weeks of postconceptional age in babies with neonatal chronic lung disease. Early Hum Dev. 2016 Dec;103:161-165. doi: 10.1016/j.earlhumdev.2016.08.015.

10. Rouillon I, Parodi M, Denoyelle F, Loundon N. How to perform ABR in young children. Eur Ann Otorhinolaryngol Head Neck Dis. 2016 Dec;133(6):431-435. doi:10.1016/j.anorl.2016.05.004.

11. Jiang ZD, Wang C. Small-for-gestation birth exerts a minor additional effect on functional impairment of the auditory brainstem in high-risk babies born at late preterm. Clin Neurophysiol. 2016 Sep;127(9):3187-3194. doi: 10.1016/j.clinph.2016.05.004.

12. Jiang ZD, Ping LL. Reduced wave amplitudes of brainstem auditory response in high-risk babies born at 28-32week gestation. Brain Dev. 2016 Nov;38(10):885-892. doi: 10.1016/j.braindev.2016.05.006.

13. Stipdonk LW, Weisglas-Kuperus N, Franken MC, Nasserinejad K, Dudink J, Goedegebure A. Auditory brainstem maturation in normal-hearing infants born preterm: a meta-analysis. Dev Med Child Neurol. 2016 Oct;58(10):1009-15. doi: 10.1111/dmcn.13151.

14. Jiang ZD, Xu ZM, Wilkinson AR. Comparison of maturational process of hearing threshold in early life between at-risk and low-risk preterm infants. Early Hum Dev. 2016 May;96:21-25. doi: 10.1016/j.earlhumdev.2016.02.007.

15. Jiang ZD. A longitudinal study of brainstem auditory response from birth to late term in late preterm babies and abnormal findings in high-risk babies. J Perinat Med. 2015 Nov;43(6):769-76. doi: 10.1515/jpm-2014-0203.

16. Jiang ZD. Brainstem auditory evoked responses in small-for-gestational age babies born at 30 and less weeks of gestation. Eur J Pediatr. 2016 Feb;175(2):273-9. doi: 10.1007/s00431-015-2636-z.

17. Wang C, Jiang ZD. Brainstem auditory response findings in very preterm babies in the intensive care unit. Neonatology. 2015;107(2):157-60. doi: 10.1159/000368957.

18. Jiang ZD. Neural conduction impairment in the auditory brainstem and the prevalence in term babies in neonatal intensive care unit. Clin Neurophysiol. 2015 Jul;126(7):1446-52. doi: 10.1016/j.clinph.2014.10.147.

19. Rosa LA, Suzuki MR, Angrisani RG, Azevedo MF. Auditory brainstem response: reference-values for age. Codas. 2014 Mar-Apr;26(2):117-21. English, Portuguese.

20. Lightfoot G, Ferm I, Hall A, Evans K. The effect of notch filtering on the waveform of the newborn auditory brainstem response. Int J Audiol. 2014 Sep;53(9):629-32. doi: 10.3109/14992027.2014.894644.

21. Angrisani RM, Bautzer AP, Matas CG, Azevedo MF. Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio. Rev Paul Pediatr. 2013 Dec;31(4):494-500. doi: 10.1590/S0103-05822013000400012. English, Portuguese.

22. Jiang ZD, Liu TT, Chen C. Brainstem auditory electrophysiology is supressed in term neonates with hyperbilirubinemia. Eur J Paediatr Neurol. 2014 Mar;18(2):193-200. doi: 10.1016/j.ejpn.2013.11.004.

23. Stevens J, Brennan S, Gratton D, Campbell M. ABR in newborns: effects of electrode configuration, stimulus rate, and EEG rejection levels on test efficiency. Int J Audiol. 2013 Oct;52(10):706-12. doi: 10.3109/14992027.2013.809482.

24. Suppiej A, Rizzardi E, Zanardo V, Franzoi M, Ermani M, Orzan E. Reliability of hearing screening in high-risk neonates: comparative study of otoacoustic emission, automated and conventional auditory brainstem response. Clin Neurophysiol. 2007 Apr;118(4):869-76.

25. Koravand A, Jutras B, Lassonde M. Abnormalities in cortical auditory responses in children with central auditory processing disorder. Neuroscience. 2017 Mar 27;346:135-148. doi: 10.1016/j.neuroscience.2017.01.011.

26. Pfister KM, Zhang L, Miller NC, Hultgren S, Boys CJ, Georgieff MK. ERP evidence of preserved early memory function in term infants with neonatal encephalopathy following therapeutic hypothermia. Pediatr Res. 2016 Dec;80(6):800-808. doi: 10.1038/pr.2016.169.

27. Menezes MP, O'Brien K, Hill M, Webster R, Antony J, Ouvrier R, Birman C, Gardner-Berry K. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency. Dev Med Child Neurol. 2016 Aug;58(8):848-54. doi: 10.1111/dmcn.13084.

28. Cooray GK, Garrido MI, Brismar T, Hyllienmark L. The maturation of mismatch negativity networks in normal adolescence. Clin Neurophysiol. 2016 Jan;127(1):520-529. doi: 10.1016/j.clinph.2015.06.026.

POTENZIALI EVOCATI VISIVI

1. McCulloch DL, Orbach H, Skarf B. Maturation of the pattern-reversal VEP in human infants: a theoretical framework. Vision Res. 1999 Nov;39(22):3673-80. PubMed PMID: 10746137.

2. Bane MC, Birch EE. VEP acuity, FPL acuity, and visual behavior of visually impaired children. J PediatrOphthalmol Strabismus. 1992 Jul-Aug;29(4):202-9. PubMed PMID: 1512659.

3. Daneshvarfard F, Maarefi N, Abrishami Moghaddam H, Wallois F. A survey on stimuli for visual cortical function assessment in infants. Brain Dev. 2018 Jan;40(1):2-15. doi: 10.1016/j.braindev.2017.07.010.

4. Nevalainen P, Marchi V, Metsäranta M, Lönnqvist T, Toiviainen-Salo S, Vanhatalo S, Lauronen L. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin Neurophysiol. 2017 Jul;128(7):1337-1343. doi: 10.1016/j.clinph.2017.04.025.

5. Jung S, Polosa A, Lachapelle P, Wintermark P. Visual Impairments Following Term Neonatal Encephalopathy: Do Retinal Impairments Also Play a Role? Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5182-93. doi: 10.1167/iovs.15-16407.

6. Sayeur MS, Vannasing P, Lefrançois M, Tremblay E, Lepore F, Lassonde M, McKerral M, Gallagher A. Early childhood development of visual texture segregation in full-term and preterm children. Vision Res. 2015 Jul;112:1-10. doi: 10.1016/j.visres.2015.04.013.

7. Cruz S, Crego A, Ribeiro E, Gonçalves Ó, Sampaio A. A VEP study in sleeping and awake one-month-old infants and its relation with social behavior. Int J Dev Neurosci. 2015 Apr;41:37-43. doi: 10.1016/j.ijdevneu.2014.12.006.

8. Tremblay E, Vannasing P, Roy MS, Lefebvre F, Kombate D, Lassonde M, Lepore F, McKerral M, Gallagher A. Delayed early primary visual pathway development in premature infants: high density electrophysiological evidence. PLoS One. 2014 Sep 30;9(9):e107992. doi: 10.1371/journal.pone.0107992.

9. Hu L, Gu Q, Zhu Z, Yang C, Chen C, Cao Y, Zhou W. Flash visual evoked potentials are not specific enough to identify parieto-occipital lobe involvement in term neonates after significant hypoglycaemia. Acta Paediatr. 2014 Aug;103(8):e329-33. doi: 10.1111/apa.12673.

10. Carbajal-Valenzuela CC, Santiago-Rodríguez E, Harmony T, Fernández-Bouzas A. Visual Evoked Potentials in Infants With Diffuse Periventricular Leukomalacia. Clin EEG Neurosci. 2014 Oct;45(4):269-273.

11. Ruberto G, Angeli R, Tinelli C, Bianchi PE, Milano G. Morphologic and functional analysis of the optic nerve in premature and term children with OCT, HRT, and pVEP: a 10-year resurvey. Invest Ophthalmol Vis Sci. 2014 Apr 15;55(4):2367-75. doi: 10.1167/iovs.13-13647.

12. Julkunen MK, Himanen SL, Eriksson K, Janas M, Luukkaala T, Tammela O. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants. Clin Neurophysiol. 2014 Sep;125(9):1757-63. doi: 10.1016/j.clinph.2014.01.012.

13. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH. Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics. 2013 Jan;131(1):88-98. doi: 10.1542/peds.2012-1297.

14. Feng JJ, Wang WP, Guo SJ, Liu ZW, Xu X. Flash visual evoked potentials in preterm infants. Ophthalmology. 2013 Mar;120(3):489-494. doi: 10.1016/j.ophtha.2012.08.025.

15. Lehman SS. Cortical visual impairment in children: identification, evaluation and diagnosis. Curr Opin Ophthalmol. 2012 Sep;23(5):384-7. doi: 10.1097/ICU.0b013e3283566b4b.

16. Jandó G, Mikó-Baráth E, Markó K, Hollódy K, Török B, Kovacs I. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):11049-52. doi: 10.1073/pnas.1203096109.

17. Hou C, Norcia AM, Madan A, Tith S, Agarwal R, Good WV. Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Invest Ophthalmol Vis Sci. 2011 Nov 25;52(12):9091-8. doi: 10.1167/iovs.11-7458.

18. Nilsson J, Dahlgren J, Karlsson AK, Grönlund MA. Normal visual evoked potentials in preschool children born small for gestational age. Acta Paediatr. 2011 Aug;100(8):1092-6. doi: 10.1111/j.1651-2227.2011.02211.x.

19. Feng JJ, Wang TX, Yang CH, Wang WP, Xu X. Flash visual evoked potentials at 2-year-old infants with different birth weights. World J Pediatr. 2010 May;6(2):163-8. doi: 10.1007/s12519-010-0032-3.

20. Glass HC, Berman JI, Norcia AM, Rogers EE, Henry RG, Hou C, Barkovich AJ, Good WV. Quantitative fiber tracking of the optic radiation is correlated with visual-evoked potential amplitude in preterm infants. AJNR Am J Neuroradiol. 2010 Sep;31(8):1424-9. doi: 10.3174/ajnr.A2110.

21. Almoqbel F, Leat SJ, Irving E. The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt. 2008 Sep;28(5):393-403. doi: 10.1111/j.1475-1313.2008.00591.x.

22. Kuba M, Liláková D, Hejcmanová D, Kremlácek J, Langrová J, Kubová Z. Ophthalmological examination and VEPs in preterm children with perinatal CNS involvement. Doc Ophthalmol. 2008 Sep;117(2):137-45. doi: 10.1007/s10633-008-9115-z.

23. Isler JR, Grose-Fifer J, Fifer WP, Housman S, Stark RI, Grieve PG. Frequency domain analyses of neonatal flash VEP. Pediatr Res. 2007 Nov;62(5):581-5.

24. Kato T, Watanabe K. Visual evoked potential in the newborn: does it have predictive value? Semin Fetal Neonatal Med. 2006 Dec;11(6):459-63.

25. Mirabella G, Kjaer PK, Norcia AM, Good WV, Madan A. Visual development in very low birth weight infants. Pediatr Res. 2006 Oct;60(4):435-9.

 

Bibliografia per la formazione e certificazione in ENMG e PE in Neurofisiologia Clinica Pediatrica

TESTI, RACCOMADAZIONI, LINEE GUIDA

Chiappa KH. Evoked Potentials in Clinical Medicine. Third Edition 1997. Lippincot Raven

Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the IFCN (1999)scaricabilegratuitamente da http://www.clinph-journal.com/content/guidelinesIFCN

Ubiali E. Elettroneurografia. Testo Atlante. 2003 ScienzaMedica

Preston D, Shapiro B. Electromyography and Neuromuscular disorders. Clinical electrophysiological correlations. 3rd edition 2005. Elsevier,

Kimura J. Electrodiagnosis in diseases of nerve and muscle. Principles and practice. 4th edition, 2013. Oxford University Press Inc., New York, USA.Perrotto AO. Anatomical guide for electromyographer. Fifth edition. Charles C Thomas Publisher LTD. Springfield, Illinois, USA

Clinical neurophysiology of infancy, childhood, and adolescence/Gregory L. Holmes,. Solomon L. Moshé, H. Royden Jones, Jr.—1st ed. p. cm. ISBN 0-7506-7251

Cruccu G, Curio G, Guerit JM, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 2008: 119:1705-1719.

Chen R, Cros D, Currà A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committe. Clin Neurophysiol 2008;119:504-532.

Holder GE, Celesia GC, Miyake Y, et al. International Federation of Clinical Neurophysiology. Recommendation for visual testing.ClinNeurophysiol 2010;121:1393-1409

Miniussi C, Paulus W, Rossini PM, eds. Transcranial Brain Stimulation Frontiers in Neuroscience book series). CRC Press by Taylor and Francis Group, Boca Raton (FL), 2012.

Guidelines International Federation of Clinical Neurophysiology http://www.ifcn.info/guidelines.aspx?MenuID=1169

• Safety, ethical considerations, and application guidelines for the use of Transcranial Magnetic Stimulation in clinical practice and research. A consensus statement from the International Workshop on Present and Future of TMS: Safety and Ethical Guidelines.
• EvokedPotentials

• Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from the IFCN Committee

• A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN Committee
• The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee.
• Recommendations for the clinical use of somatosensory evoked potentials.

• Recommendations for visual system testing.

• Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400.

• Current status on electrodiagnostic standards and guidelines in neuromuscular disorders

ENMG

1. Parano E, Uncini A, De Vivo DC, Lovelace RE Electrophysiologic correlates of peripheral nervous system maturation in infancy and childhood. J Child Neurol. 1993 Oct;8(4):336-8

2. García A, Calleja J, Antolín FM, BercianoJ. Peripheral motor and sensory nerve conduction studies in normal infants and children. ClinNeurophysiol. 2000 Mar;111(3):513-20

3. García-García A, Calleja-Fernández J.Neurophysiology of the development and maturation of the peripheral nervous system. RevNeurol. 2004 Jan 1-15;38(1):79-83

4. Lori S, Bertini G, Bastianelli M, Gabbanini S, Gualandi D, Molesti E, Dani C. Peripheral nervous system maturation in preterm infants: longitudinal motor and sensory nerve conduction studies. Childs Nerv Syst. 2018 Apr 10. doi: 10.1007/s00381-018-3778-x

5. Silwal A, Pitt M, Phadke R, Mankad K, Davison JE, Rossor A, DeVile C, Reilly MM, Manzur AY, Muntoni F, Munot P. Clinical spectrum, treatment and outcome of children with suspected diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy. Neuromuscul Disord. 2018 Jun 12. pii: S0960-8966(17)31558-4. doi: 10.1016/j.nmd.2018.06.001.

6. Pitt M. Neurophysiological Assessment of Abnormalities of the Neuromuscular Junction in Children. Int J Mol Sci. 2018 Feb 22;19(2). pii: E624. doi: 10.3390/ijms19020624.

7. Pitt MC. Use of stimulated electromyography in the analysis of the neuromuscular junction in children. Muscle Nerve. 2017 Nov;56(5):841-847. doi: 10.1002/mus.25685.

8. Pitt MC, Mchugh JC, Deeb J, Smith RA. Assessing neuromuscular junction stability from stimulated EMG in children. Clin Neurophysiol. 2017 Feb;128(2):290-296. doi: 10.1016/j.clinph.2016.11.020.

9. Menezes MP, Rahman S, Bhattacharya K, Clark D, Christodoulou J, Ellaway C, Farrar M, Pitt M, Sampaio H, Ware TL, Wedatilake Y, Thorburn DR, Ryan MM, Ouvrier Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease. Mitochondrion. 2016 Sep;30:162-7. doi: 10.1016/j.mito.2016.07.014.

10. Patel A, Gosk M, Pitt M. The effect of different low-frequency filters on concentric needle jitter in stimulated orbicularis oculi. Muscle Nerve. 2016 Aug;54(2):317-9. doi: 10.1002/mus.25178. Epub 2016 May 26. PubMed PMID: 27159824.

11. Luigetti M, Fabrizi GM, Bisogni G, Romano A, Taioli F, Ferrarini M, Bernardo D, Rossini PM, Sabatelli M. Charcot-Marie-Tooth type 2 and distal hereditary motor neuropathy: Clinical, neurophysiological and genetic findings from a single-centre experience. Clin Neurol Neurosurg. 2016 May;144:67-71. doi: 10.1016/j.clineuro.2016.03.007.

12. Desurkar A, Lin JP, Mills K, Al-Sarraj S, Jan W, Jungbluth H, Wraige E. Charcot-Marie-Tooth (CMT) disease 1A with superimposed inflammatory polyneuropathy in children. Neuropediatrics. 2009 Apr;40(2):85-8. doi: 10.1055/s-0029-1237720.

SEP

1. Amantini A, Carrai R, Lori S, Peris A, Amadori A, Pinto F, Grippo A. Neurophysiological monitoring in adult and pediatric intensive care.Minerva Anestesiol. 2012 Sep;78(9):1067-75. Epub 2012 Jun 7. Review. PubMed PMID:22672930.

2. Lori S, Bertini G, Molesti E, Gualandi D, Gabbanini S, Bastianelli ME, Pinto F, Dani C. The prognostic role of evoked potentials in neonatal hypoxic-ischemic insult. J Matern Fetal Neonatal Med. 2011 Oct;24Suppl 1:69-71. doi: 10.3109/14767058.2011.607661. Epub 2011 Aug 31. Review. PubMed PMID: 21878035.

3. Carrai R, Grippo A, Lori S, Pinto F, Amantini A. Prognosticvalue of somatosensory evoked potentials in comatose children: a systematic literature review. Intensive Care Med. 2010 Jul;36(7):1112-26. doi: 10.1007/s00134-010-1884-7. Epub 2010 Apr 27. Review. PubMed PMID: 20422151.

4. Suppiej A, Cappellari A, Franzoi M, Traverso A, Ermani M, Zanardo V. Bilateral loss of cortical somatosensory evoked potential at birth predicts cerebral palsy in term and near-term newborns. Early Hum Dev. 2010 Feb;86(2):93-8. doi: 10.1016/j.earlhumdev.2010.01.024.

5. Trollmann R, Nüsken E, Wenzel D. Neonatal somatosensory evoked potentials: maturational aspects and prognostic value. Pediatr Neurol. 2010 Jun;42(6):427-33. doi: 10.1016/j.pediatrneurol.2009.12.007. PubMed PMID: 20472196.

6. Lori S, Gabbanini S, Bastianelli M, Bertini G, Corsini I, Dani C. Multimodal neurophysiological monitoring in healthy infants born at term: normative continuous somatosensory evoked potentials data. Dev Med Child Neurol. 2017 Sep;59(9):959-964. doi: 10.1111/dmcn.13430. Epub 2017 Apr 22. PubMed PMID: 28432693.

7. Doria-Lamba L, Montaldi L, Grosso P, Veneselli E, Giribaldi G. Short latency evoked somatosensory potentials after stimulation of the median nerve in children: normative data. J ClinNeurophysiol. 2009 Jun;26(3):176-82. doi: 10.1097/WNP.0b013e3181a76a56. PubMed PMID: 19424081.

8. Tombini M, Pasqualetti P, Rizzo C, Zappasodi F, Dinatale A, Seminara M, Ercolani M, Rossini PM, Agostino R. Extrauterine maturation of somatosensory pathways in preterm infants: a somatosensory evoked potential study. Clin Neurophysiol. 2009 Apr;120(4):783-9. doi: 10.1016/j.clinph.2008.12.032.

9. Boor R, Li L, Goebel B, Reitter B. Subcortical somatosensory evoked potentials after posterior tibial nerve stimulation in children. Brain Dev. 2008 Sep;30(8):493-8. doi: 10.1016/j.braindev.2007.06.010. Epub 2008 Jul 7. PubMed PMID: 18606513.

10. Boor R, Goebel B, Doepp M, Taylor MJ. Somatosensory evoked potentials after posteriortibial nerve stimulation--normative data in children. Eur J Paediatr Neurol. 1998;2(3):145-52. PubMed PMID: 10726836.

11. Boor R, Goebel B, Taylor MJ. Subcortical somatosensory evoked potentials after median nerve stimulation in children. Eur J Paediatr Neurol. 1998;2(3):137-43. PubMed PMID: 10726835.

12. Pike AA, Marlow N, Dawson C. Posterior tibial somatosensory evoked potentials in very preterm infants. Early Hum Dev. 1997 Jan 3;47(1):71-84. PubMed PMID: 9118831.

13. George SR, Taylor MJ. Somatosensory evoked potentials in neonates and infants: developmental and normative data. ElectroencephalogrClinNeurophysiol. 1991 Mar-Apr;80(2):94-102. PubMed PMID: 1707810.
14. Dachy B. Does sensitivity to arousal improve the prognostic value of somatosensory evoked potentials in newborn infants? Dev Med Child Neurol. 2017 Sep;59(9):890. doi: 10.1111/dmcn.13505.

15. Nevalainen P, Marchi V, Metsäranta M, Lönnqvist T, Toiviainen-Salo S, Vanhatalo S, Lauronen L. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin Neurophysiol. 2017 Jul;128(7):1337-1343. doi: 10.1016/j.clinph.2017.04.025.

16. Nevalainen P, Lauronen L, Metsäranta M, Lönnqvist T, Ahtola E, Vanhatalo S. Neonatal somatosensory evoked potentials persist during hypothermia. Acta Paediatr. 2017 Jun;106(6):912-917. doi: 10.1111/apa.13813.

STIMOLAZIONE MAGNETICA TRANSCRANICA

7. Säisänen L, Julkunen P, Lakka T, Lindi V, Könönen M, Määttä S. Development of
corticospinal motor excitability and cortical silent period from mid-childhood to
adulthood - a navigated TMS study. NeurophysiolClin. 2017 Dec 20.pii:
S0987-7053(17)30168-5. doi: 10.1016/j.neucli.2017.11.004.

8. Allen CH, Kluger BM, Buard I. Safety of Transcranial Magnetic Stimulation in
Children: A Systematic Review of the Literature. Pediatr Neurol. 2017
Mar;68:3-17. doi: 10.1016/j.pediatrneurol.2016.12.009..

9. Narayana S, Papanicolaou AC, McGregor A, Boop FA, Wheless JW. Clinical
Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. J Child
Neurol. 2015 Aug;30(9):1111-24. doi: 10.1177/0883073814553274.

10. Narayana S, Rezaie R, McAfee SS, Choudhri AF, Babajani-Feremi A, Fulton S,
Boop FA, Wheless JW, Papanicolaou AC. Assessing motor function in young children
withtranscranial magnetic stimulation. Pediatr Neurol. 2015 Jan;52(1):94-103.
doi: 10.1016/j.pediatrneurol.2014.08.031.

11. Garvey MA, Mall V. Transcranial magnetic stimulation in children. Clin
Neurophysiol. 2008 May;119(5):973-84. doi: 10.1016/j.clinph.2007.11.048.

12. Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic
stimulation in child neurology: current and future directions. J Child Neurol.
2008 Jan;23(1):79-96.

POTENZIALI EVOCATI ACUSTICI e POTENZIALI EVENTO CORRELATI

1. Scaioli V, Brinciotti M, Di Capua M, Lori S, Janes A, Pastorino G, Peruzzi C, Sergi P, Suppiej A. A Multicentre Database for Normative Brainstem Auditory Evoked Potentials (BAEPs) in Children: Methodology for Data Collection and Evaluation. Open Neurol J. 2009 Oct 9;3:72-84. doi: 10.2174/1874205X00903010072. PubMed PMID: 19911069; PubMed Central PMCID: PMC2775124.

2. Stephen JM, Hill DE, Peters A, Flynn L, Zhang T, Okada Y. Development of Auditory Evoked Responses in Normally Developing Preschool Children and Children with Autism Spectrum Disorder. Dev Neurosci. 2017;39(5):430-441. doi: 10.1159/000477614.

3. Vlaskamp C, Oranje B, Madsen GF, Møllegaard Jepsen JR, Durston S, Cantio C, Glenthøj B, Bilenberg N. Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Res. 2017 Nov;10(11):1857-1865. doi: 10.1002/aur.1821.

4. Jiang ZD, Chen C. Short-term outcome of functional integrity of the auditory brainstem in term infants who suffer perinatal asphyxia. J Neurol Sci. 2017 May 15;376:219-224. doi: 10.1016/j.jns.2017.03.036.

5. Cubero-Rego L, Ricardo-Garcell J, Corsi-Cabrera M, Cruz-Martínez R, Rebolledo-Fernández C, Otero-Ojeda G, Harmony T. Improving the efficiency of Auditory Brainstem Responses in newborns, using a 60clicks/s stimulation rate. J Clin Neurosci. 2017 Nov;45:299-304. doi: 10.1016/j.jocn.2017.08.044.

6. Stuermer KJ, Foerst A, Sandmann P, Fuerstenberg D, Lang-Roth R, Walger M. Maturation of auditory brainstem responses in young children with congenital monaural atresia. Int J Pediatr Otorhinolaryngol. 2017 Apr;95:39-44. doi: 10.1016/j.ijporl.2017.01.029.

7. Bakhos D, Marx M, Villeneuve A, Lescanne E, Kim S, Robier A. Electrophysiological exploration of hearing. Eur Ann Otorhinolaryngol Head Neck Dis. 2017 Oct;134(5):325-331. doi: 10.1016/j.anorl.2017.02.011.

8. Yang HC, Sung CM, Shin DJ, Cho YB, Jang CH, Cho HH. Newborn hearing screening
in prematurity: fate of screening failures and auditory maturation. Clin Otolaryngol. 2017 Jun;42(3):661-667. doi: 10.1111/coa.12794.

9. Jiang ZD, Wang C. Abnormal findings in brainstem auditory evoked response at 36-37weeks of postconceptional age in babies with neonatal chronic lung disease. Early Hum Dev. 2016 Dec;103:161-165. doi: 10.1016/j.earlhumdev.2016.08.015.

10. Rouillon I, Parodi M, Denoyelle F, Loundon N. How to perform ABR in young children. Eur Ann Otorhinolaryngol Head Neck Dis. 2016 Dec;133(6):431-435. doi:10.1016/j.anorl.2016.05.004.

11. Jiang ZD, Wang C. Small-for-gestation birth exerts a minor additional effect on functional impairment of the auditory brainstem in high-risk babies born at late preterm. Clin Neurophysiol. 2016 Sep;127(9):3187-3194. doi: 10.1016/j.clinph.2016.05.004.

12. Jiang ZD, Ping LL. Reduced wave amplitudes of brainstem auditory response in high-risk babies born at 28-32week gestation. Brain Dev. 2016 Nov;38(10):885-892. doi: 10.1016/j.braindev.2016.05.006.

13. Stipdonk LW, Weisglas-Kuperus N, Franken MC, Nasserinejad K, Dudink J, Goedegebure A. Auditory brainstem maturation in normal-hearing infants born preterm: a meta-analysis. Dev Med Child Neurol. 2016 Oct;58(10):1009-15. doi: 10.1111/dmcn.13151.

14. Jiang ZD, Xu ZM, Wilkinson AR. Comparison of maturational process of hearing threshold in early life between at-risk and low-risk preterm infants. Early Hum Dev. 2016 May;96:21-25. doi: 10.1016/j.earlhumdev.2016.02.007.

15. Jiang ZD. A longitudinal study of brainstem auditory response from birth to late term in late preterm babies and abnormal findings in high-risk babies. J Perinat Med. 2015 Nov;43(6):769-76. doi: 10.1515/jpm-2014-0203.

16. Jiang ZD. Brainstem auditory evoked responses in small-for-gestational age babies born at 30 and less weeks of gestation. Eur J Pediatr. 2016 Feb;175(2):273-9. doi: 10.1007/s00431-015-2636-z.

17. Wang C, Jiang ZD. Brainstem auditory response findings in very preterm babies in the intensive care unit. Neonatology. 2015;107(2):157-60. doi: 10.1159/000368957.

18. Jiang ZD. Neural conduction impairment in the auditory brainstem and the prevalence in term babies in neonatal intensive care unit. Clin Neurophysiol. 2015 Jul;126(7):1446-52. doi: 10.1016/j.clinph.2014.10.147.

19. Rosa LA, Suzuki MR, Angrisani RG, Azevedo MF. Auditory brainstem response: reference-values for age. Codas. 2014 Mar-Apr;26(2):117-21. English, Portuguese.

20. Lightfoot G, Ferm I, Hall A, Evans K. The effect of notch filtering on the waveform of the newborn auditory brainstem response. Int J Audiol. 2014 Sep;53(9):629-32. doi: 10.3109/14992027.2014.894644.

21. Angrisani RM, Bautzer AP, Matas CG, Azevedo MF. Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio. Rev Paul Pediatr. 2013 Dec;31(4):494-500. doi: 10.1590/S0103-05822013000400012. English, Portuguese.

22. Jiang ZD, Liu TT, Chen C. Brainstem auditory electrophysiology is supressed in term neonates with hyperbilirubinemia. Eur J Paediatr Neurol. 2014 Mar;18(2):193-200. doi: 10.1016/j.ejpn.2013.11.004.

23. Stevens J, Brennan S, Gratton D, Campbell M. ABR in newborns: effects of electrode configuration, stimulus rate, and EEG rejection levels on test efficiency. Int J Audiol. 2013 Oct;52(10):706-12. doi: 10.3109/14992027.2013.809482.

24. Suppiej A, Rizzardi E, Zanardo V, Franzoi M, Ermani M, Orzan E. Reliability of hearing screening in high-risk neonates: comparative study of otoacoustic emission, automated and conventional auditory brainstem response. Clin Neurophysiol. 2007 Apr;118(4):869-76.

25. Koravand A, Jutras B, Lassonde M. Abnormalities in cortical auditory responses in children with central auditory processing disorder. Neuroscience. 2017 Mar 27;346:135-148. doi: 10.1016/j.neuroscience.2017.01.011.

26. Pfister KM, Zhang L, Miller NC, Hultgren S, Boys CJ, Georgieff MK. ERP evidence of preserved early memory function in term infants with neonatal encephalopathy following therapeutic hypothermia. Pediatr Res. 2016 Dec;80(6):800-808. doi: 10.1038/pr.2016.169.

27. Menezes MP, O'Brien K, Hill M, Webster R, Antony J, Ouvrier R, Birman C, Gardner-Berry K. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency. Dev Med Child Neurol. 2016 Aug;58(8):848-54. doi: 10.1111/dmcn.13084.

28. Cooray GK, Garrido MI, Brismar T, Hyllienmark L. The maturation of mismatch negativity networks in normal adolescence. Clin Neurophysiol. 2016 Jan;127(1):520-529. doi: 10.1016/j.clinph.2015.06.026.

POTENZIALI EVOCATI VISIVI

1. McCulloch DL, Orbach H, Skarf B. Maturation of the pattern-reversal VEP in human infants: a theoretical framework. Vision Res. 1999 Nov;39(22):3673-80. PubMed PMID: 10746137.

2. Bane MC, Birch EE. VEP acuity, FPL acuity, and visual behavior of visually impaired children. J PediatrOphthalmol Strabismus. 1992 Jul-Aug;29(4):202-9. PubMed PMID: 1512659.

3. Daneshvarfard F, Maarefi N, Abrishami Moghaddam H, Wallois F. A survey on stimuli for visual cortical function assessment in infants. Brain Dev. 2018 Jan;40(1):2-15. doi: 10.1016/j.braindev.2017.07.010.

4. Nevalainen P, Marchi V, Metsäranta M, Lönnqvist T, Toiviainen-Salo S, Vanhatalo S, Lauronen L. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin Neurophysiol. 2017 Jul;128(7):1337-1343. doi: 10.1016/j.clinph.2017.04.025.

5. Jung S, Polosa A, Lachapelle P, Wintermark P. Visual Impairments Following Term Neonatal Encephalopathy: Do Retinal Impairments Also Play a Role? Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5182-93. doi: 10.1167/iovs.15-16407.

6. Sayeur MS, Vannasing P, Lefrançois M, Tremblay E, Lepore F, Lassonde M, McKerral M, Gallagher A. Early childhood development of visual texture segregation in full-term and preterm children. Vision Res. 2015 Jul;112:1-10. doi: 10.1016/j.visres.2015.04.013.

7. Cruz S, Crego A, Ribeiro E, Gonçalves Ó, Sampaio A. A VEP study in sleeping and awake one-month-old infants and its relation with social behavior. Int J Dev Neurosci. 2015 Apr;41:37-43. doi: 10.1016/j.ijdevneu.2014.12.006.

8. Tremblay E, Vannasing P, Roy MS, Lefebvre F, Kombate D, Lassonde M, Lepore F, McKerral M, Gallagher A. Delayed early primary visual pathway development in premature infants: high density electrophysiological evidence. PLoS One. 2014 Sep 30;9(9):e107992. doi: 10.1371/journal.pone.0107992.

9. Hu L, Gu Q, Zhu Z, Yang C, Chen C, Cao Y, Zhou W. Flash visual evoked potentials are not specific enough to identify parieto-occipital lobe involvement in term neonates after significant hypoglycaemia. Acta Paediatr. 2014 Aug;103(8):e329-33. doi: 10.1111/apa.12673.

10. Carbajal-Valenzuela CC, Santiago-Rodríguez E, Harmony T, Fernández-Bouzas A. Visual Evoked Potentials in Infants With Diffuse Periventricular Leukomalacia. Clin EEG Neurosci. 2014 Oct;45(4):269-273.

11. Ruberto G, Angeli R, Tinelli C, Bianchi PE, Milano G. Morphologic and functional analysis of the optic nerve in premature and term children with OCT, HRT, and pVEP: a 10-year resurvey. Invest Ophthalmol Vis Sci. 2014 Apr 15;55(4):2367-75. doi: 10.1167/iovs.13-13647.

12. Julkunen MK, Himanen SL, Eriksson K, Janas M, Luukkaala T, Tammela O. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants. Clin Neurophysiol. 2014 Sep;125(9):1757-63. doi: 10.1016/j.clinph.2014.01.012.

13. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH. Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics. 2013 Jan;131(1):88-98. doi: 10.1542/peds.2012-1297.

14. Feng JJ, Wang WP, Guo SJ, Liu ZW, Xu X. Flash visual evoked potentials in preterm infants. Ophthalmology. 2013 Mar;120(3):489-494. doi: 10.1016/j.ophtha.2012.08.025.

15. Lehman SS. Cortical visual impairment in children: identification, evaluation and diagnosis. Curr Opin Ophthalmol. 2012 Sep;23(5):384-7. doi: 10.1097/ICU.0b013e3283566b4b.

16. Jandó G, Mikó-Baráth E, Markó K, Hollódy K, Török B, Kovacs I. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):11049-52. doi: 10.1073/pnas.1203096109.

17. Hou C, Norcia AM, Madan A, Tith S, Agarwal R, Good WV. Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Invest Ophthalmol Vis Sci. 2011 Nov 25;52(12):9091-8. doi: 10.1167/iovs.11-7458.

18. Nilsson J, Dahlgren J, Karlsson AK, Grönlund MA. Normal visual evoked potentials in preschool children born small for gestational age. Acta Paediatr. 2011 Aug;100(8):1092-6. doi: 10.1111/j.1651-2227.2011.02211.x.

19. Feng JJ, Wang TX, Yang CH, Wang WP, Xu X. Flash visual evoked potentials at 2-year-old infants with different birth weights. World J Pediatr. 2010 May;6(2):163-8. doi: 10.1007/s12519-010-0032-3.

20. Glass HC, Berman JI, Norcia AM, Rogers EE, Henry RG, Hou C, Barkovich AJ, Good WV. Quantitative fiber tracking of the optic radiation is correlated with visual-evoked potential amplitude in preterm infants. AJNR Am J Neuroradiol. 2010 Sep;31(8):1424-9. doi: 10.3174/ajnr.A2110.

21. Almoqbel F, Leat SJ, Irving E. The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt. 2008 Sep;28(5):393-403. doi: 10.1111/j.1475-1313.2008.00591.x.

22. Kuba M, Liláková D, Hejcmanová D, Kremlácek J, Langrová J, Kubová Z. Ophthalmological examination and VEPs in preterm children with perinatal CNS involvement. Doc Ophthalmol. 2008 Sep;117(2):137-45. doi: 10.1007/s10633-008-9115-z.

23. Isler JR, Grose-Fifer J, Fifer WP, Housman S, Stark RI, Grieve PG. Frequency domain analyses of neonatal flash VEP. Pediatr Res. 2007 Nov;62(5):581-5.

24. Kato T, Watanabe K. Visual evoked potential in the newborn: does it have predictive value? Semin Fetal Neonatal Med. 2006 Dec;11(6):459-63.

25. Mirabella G, Kjaer PK, Norcia AM, Good WV, Madan A. Visual development in very low birth weight infants. Pediatr Res. 2006 Oct;60(4):435-9.